8.2 习题课讲解

8.2.1 有理函数的不定积分

例 8.2.1 计算以下不定积分:

(1)

1x21+x2dx

(2)

x3x2dx

(3)

2x+1x2+x+1dx

(4)

xx2+x6dx

(5)

x21+x6dx

(6)

x1x24x+8dx

(7)

1(x+1)(x+2)dx

(8)

1x(1+x2)dx

(9)

x3+1x35x2+6xdx

(10)

1x41dx

(11)

x4x4+5x2+4dx

(12)

11+x3dx

(13)

x7(1x2)5dx

(14)

1x4(2x21)dx

(15)

1x(xn+a)dx

(1) 线性、观察原函数 (1)1x21+x2dx=21+x2dxdx=2arctanxx+C

(2) 凑微分 (2)x3x2dx=1213x2d(x23)=12ln|x23|+C

(3) 凑微分 (3)2x+1x2+x+1dx=1x2+x+1d(x2+x+1)=ln|x2+x+1|+C

(4) 最简因式分解 (4)xx2+x6dx=15(3x3+2x+2)dx=35ln|x3|+25ln|x+2|+C

(5) 凑微分 (5)x21+x6dx=131(x3)2+1dx3=13arctanx3+C

(6) 线性、换元 (6)x1x24x+8dx=x2(x2)2+4dx+1(x2)2+4dx=121udu+121v2+1dv,u=(x2)2+4,v=x22=12ln|x24x+8|+arctanx22+C

(7) 最简分式分解 (7)1(x+1)(x+2)dx=(1x+11x+2)dx=ln|x+1x+2|+C

(8) 凑微分、线性 (8)1x(1+x2)dx=121x2(1+x2)dx2=ln|x|12ln(1+x2)+C

(9) 设(9)5x26x+1=A(x2)(x3)+Bx(x3)+Ex(x2)(10)x3+1x35x2+6xdx=[1+5x26x+1x(x2)(x3)]dx=x+(Ax+Bx2+Ex3)dx 两边取 x=0,得到 A=16;取 x=2,得到 B=92;取 x=3,得到 E=283。故(11)x3+1x35x2+6xdx=x+16ln|x|92ln|x2|+283ln|x3|+C

(10) 最简分式:设(12)1=A(x+1)(x2+1)+B(x1)(x2+1)+E(x21)(13)1x41dx=(Ax1+Bx+1+Ex2+1)dxx=i,得到 E=12;取 x=1,得到 A=14;取 x=1,得到 B=14 或由偶函数知 B=A。故(14)1x41dx=14ln|x1x+1|12arctanx+C

(11) 设(15)x4=(x2+1)(x2+4)+A(x2+4)+B(x2+1)(16)x4x4+5x2+4dx=(1+Ax2+1+Bx2+4)dxx=i 得到 A=13;取 x=2i 得到 B=163。故(17)x4x4+5x2+4dx=x+13arctanx83arctanx2+C

(12) 设(18)1=A(x2x+1)+[B(x12)+E](x+1)(19)1x3+1dx=[Ax+1+B(x12)+E(x12)2+34]dxx=1 得到 A=13;比较 x2 的系数得到 B=A=13;取 x=0 得到 E=12。故(20)1x3+1dx=13ln|x+1|16ln(x2x+1)+13arctan2x13+C

(13) (21)x7(1x2)5dx=12(1y)3y5dy,y=1x2=4x66x4+4x218(x21)4+C

(14) 设(22)1=(Ax2+B)(2x21)+Ex4(2x+1)+Fx4(2x1)(23)1x4(2x21)dx=(Ax2+Bx4+E2x1+F2x+1)dxx=0 得到 B=1;取 x=12 得到E=2;取 x=12 得到,F=2(或由偶函数知 F=E)。求二阶导可得并代入x=0可得(24)0=2A(2x21)+4(Ax2+B)=2A+4BA=2B=2

(25)1x4(2x21)dx=2x+13x3+2ln|2x12x+1|+C

(15) (26)1x(xn+a)dx=xn1xn(xn+a)dx=1ndyy(y+a),y=xn=1naln|xnxn+a|+C

8.2.2 三角函数的不定积分

例 8.2.2 计算以下不定积分:

(1)

(12cot2x)dx

(2)

tanxdx

(3)

sec2x1+tanxdx

(4)

cos2(12x)dx

(5)

cos3xdx

(6)

sinαxcosβxdx

(7)

tan4xdx

(8)

1+cosxdx

(9)

sin2x1+sin4xdx

(10)

sin4xcos3xdx

(11)

1sinxcos4xdx

(12)

sin2x1+sin2xdx

(13)

1+tanxsin2xdx

(14)

1tanx1+tanxdx

(15)

1(2+cosx)sinxdx

(16)

sinxsinx+cosxdx

(17)

15+4sinxdx

(18)

cosxsinx+cosxdx

(19)

sinxcos3x1+cos2xdx

(20)

1+cosxsinxdx,x(0,π)

(21)

1+cscxdx

情况一:利用三角函数二倍角公式、积化和差等降次,用三角函数的平方关系化简。

(4) (27)cos2(12x)dx=cos(24x)+12dx=12x18sin(24x)+C

(6) 设α2β2,则(28)sinαxcosβxdx=sin(α+β)x+sin(αβ)x2dx=cos(α+β)x2(α+β)cos(αβ)x2(αβ)+C

(8) 设x[π,π],则(29)1+cosxdx=2cos2x2dx=22cosx2dx2=22sinx2+C

情况二f(tanx)dx,t=tanx

(1) (30)(12cot2x)dx=(12t2)dt1+t2=3x+2cotx+C

(2) (31)tanxdx=tdt1+t2=12ln(1+tan2x)+C

(2') (32)tanxdx=sinxdxcosx=ln|cosx|+Ctanxdx=secxtanxdxsecx=ln|secx|+C

(3) (33)sec2x1+tanxdx=11+td(t+1)=21+tanx+C

(7) (34)tan4xdx=t4dt1+t2=xtanx+13tan3x+C

(12) (35)sin2x1+sin2xdx=sin2x2sin2x+cos2xdx=t22t2+1dt1+t2=x12arctan(2tanx)+C

(13) (36)1+tanxsin2xdx=1+tanx2tanxdtanx=1+t2tdt=12tanx+12ln|tanx|+C

(14) (37)1tanx1+tanxdx=1t1+tdt1+t2=ln|cosx|+ln|1+tanx|+C

(14') (38)1tanx1+tanxdx=cosxsinxsinx+cosxdx=ln|sinx+cosx|+C

(16) (39)cosxsinx+cosxdx=1tanx+1dx=11+tdt1+t2=x2+12ln|sinx+cosx|+C

(18) (40)sinxsinx+cosxdx=tanxtanx+1dx=t1+tdt1+t2=x212ln|sinx+cosx|+C

(16') (18') (41)(16)(18)=cosxsinxsinx+cosxdx=ln|sinx+cosx|+C(16)+(18)=dx=x+C

情况三f(sinx)cosxdxf(cosx)sinxdx

(5) (42)cos3xdx=(1sin2x)dsinx=sinx13sin3x+C

(9) 令t=sinx,则(43)sin2x1+sin4xdx=d(t2)1+t4=arctan(sin2x)+C

(10) 令t=sinx,则(44)sin4xcos3xdx=sin4xcos4xdsinx=t4(1t2)2dt=34ln1sinx1+sinx+32secxtanxsinxtan2x+C

(11) 令t=cosx,则(45)1sinxcos4xdx=dcosxsin2xcos4x=1(1t2)t4dt=ln|tanx2|+secx+13sec3x+C

(15) 令t=cosx,则(46)1(2+cosx)sinxdx=dt(2+t)(1t2)=16ln(1cosx)(2+cosx)2(1+cosx)3+C

(19) 令t=cosx,则(47)sinxcos3x1+cos2xdx=t31+t2dt=14cos2x+12ln(3+cos2x)+C

(20) 令t=cosx,则(48)1+cosxsinxdx=1+t1t2dt=2ln|tanx4|+C

情况四:万能公式。令t=tanx2,则cosx=1t21+t2sinx=2t1+t2

(17) (49)15+4sinxdx=15+42t1+t2d(2arctant)=25+5t2+8tdt=23arctan4+5tanx23+C

(21) (50)1+cscxdx=1+1+t22td(2arctant)=t+12t21+t2dt=2arctancotx1+cscx+C

8.2.3 无理式的不定积分

例 8.2.3 计算以下不定积分:

(1)

x2a2+x2dx

(2)

x24xdx

(3)

1xa2x2dx

(4)

1x2x21dx

(5)

2x14x2+4x+5dx

(6)

x23+2xx2dx

(7)

1x(x+x3)dx

(8)

x+1x1x+1+x1dx

(9)

xx+2dx

(10)

x21x2dx

(11)

xx4+2x21dx

(12)

x1+x1xdx

(13)

axxbdx

(14)

1x+x21+xx2dx

(15)

1(a2x2)3dx

(1) 解法一:三角换元x=atant。设(51)u2=A(1u)(1+u)2+A(1+u)(1u)2+B(1+u)2+B(1u)2(52)x2a2+x2dx=a2tan2tacostacos2tdt=a2sin2t(1sin2t)2dsint=a2[A1u+A1+u+B(1u)2+B(1+u)2]du,u=sintu=1 得到 B=14,取 u=0 得到 A=B=14,所以(53)x2a2+x2dx=a24ln1u1+u+a22u1u2+C=a24ln1sint1+sint+a22sintcos2t+C=a24lnx2+a2xx2+a2+x+12xx2+a2+C=12xa2+x2+a22ln(a2+x2x)+C

解法二:双曲函数换元x=asinht,则(54)xa+1+x2a2=et,1+x2a2xa=et 故有(55)x2a2+x2dx=a2sinh2tacoshtacoshtdt=a2(etet2)2dt=a24(e2t+e2t2)dt=a24[e2te2t22t]+C 其中(56)e2te2t=(xa+1+x2a2)2(1+x2a2xa)2=2a2xx2+a2 (57)t=ln(x2+a2x)lna

解法三:双曲有理换元x=2at1t2,则(58)t=a+a2+x2x,a2+x2=a2+4a2t2(1t2)2=a1+t21t2 故有(59)x2a2+x2dx=4a2t2(1t2)21t2a(1+t2)d2at1t2=8a2t2(1t2)3dt

(2) 令t=x24,则(60)x24xdx=12x24x2dx2=12tt2+4d(t2+4)=x242arctanx242+C

(3) 令t=a2x2,则(61)1xa2x2dx=12d(a2t2)(a2t2)t=12alnaa2x2a+a2x2+C

(4) 解法一:三角换元x=sect0tπtπ2,则(62)1x2x21dx=cos2ttantd1cost=costdt=sint+C=11x2+C

解法二:双曲换元 x=cosht,则(63)1cosh2tsinhtdcosht=1cosh2tdt=4e2t+e2t+2dt=2u2+2u+1du,u=e2t=2u+1+C

(5) (64)2x14x2+4x+5dx=124x2+4x+5+ln(4x2+4x+52x1)+C

(6) (65)x2x2+2x+3dx=12(x+3)x2+2x+36tan1x2+2x+3x+1+C

(7) (66)1x(x3+x)dx=6ln(x6+1)+C

(8) (67)x+1x1x1+x+1dx=12[x2x1x+1x2log(x1x+1)1]+C

(9) (68)xx+2dx=215(x+2)3/2(3x4)+C

(10) (69)x21x2dx=18[x1x2(2x21)2tan11x2x+1]+C

(11) (70)xx4+2x21dx=14(x2+1)x4+2x21tanh1x4+2x21x2+2+1+C

(12) (71)xx+11xdx=12x+11x(x2+x2)2tan1x+121x+C

(13) (72)axxbdx=(ax)(xb)+(ab)tan1xbax+C

(14) (73)x2x+1x2+x+1dx=14[(12x)x2+x+1+11tan1xx2+x+11]+C

(15) (74)1(a2x2)3dx=xa2a2x2+C

8.2.4 换元法和分部积分

例 8.2.4 计算以下不定积分:

(1)

1(1+x2)arctanxdx

(2)

1x2sinh1xdx

(3)

xsec2(1x2)dx

(4)

x1+x2sin1+x2dx

(5)

arcsinx1x2dx

(6)

2x44x+1dx

(7)

ex1+e2xdx

(8)

tanhxdx

(9)

1xlnxlnlnxdx

(10)

1lnxxdx

(1) (75)1(1+x2)arctanxdx=1arctanxdarctanx=lnarctanx+C

(2) (76)1x2sinh1xdx=dcosh1x=cosh1x+C

(3) (77)xsec2(1x2)dx=12sec2udu=tan(1x2)+C

(4) (78)x1+x2sin1+x2dx=cos1+x2+C

(5) (79)arcsinx1x2dx=23(arcsinx)32+C

(6) (80)2x44x+1dx=12u1u2dlnuln2=122lnarcsin(2x)+C

(7) (81)ex1+e2xdx=arctan(ex)+C

(8) (82)tanhxdx=dcoshxcoshx=lncoshx+C

(9) (83)1xlnxlnlnxdx=1lnxlnlnxdlnx=lnlnlnx+C

(10) (84)1lnxxdx=23(1lnx)32+C

例 8.2.5 计算以下不定积分:

(1)

xcos2xdx

(2)

xe3xdx

(3)

x2sin2xdx

(4)

xarctanxdx

(5)

xln(x1)dx

(6)

ln(x+1+x2)dx

(7)

arccos2xdx

(8)

xtan2xdx

(9)

xsin2xdx

(10)

exsin2xdx

(11)

arcsinexexdx

(12)

sin(lnx)dx

(1) (85)xcos2xdx=(A1x+A2)cos2x+(B1x+B2)sin2x+C 两边求导得到(86)xcos2x=A1cos2x2(A1x+A2)sin2x+B1sin2x+2(B1x+B2)cos2x 比较系数得到(87)B1=12,A1=0,B2=0,A2=14 因此(88)xcos2xdx=12xsin2x+14cos2x+C

(2) (89)xe3xdx=(Ax+B)e3x+C 两边求导得到(90)xe3x=e3x(3Ax3B+A) 比较系数得到(91)A=13,B=19 所以(92)xe3xdx=3x+19e3x+C

(3) (93)x2sin2xdx=x2(1cos2x)2dx=x36+(A1x2+A2x+A3)cos2x+(B1x2+B2x+B3)sin2x+C 求导得(94)x21cos2x2=x22+(2A1x+A2+2B1x2+2B2x+2B3)cos2x+(2A1x22A2x2A3+2B1x+B2)sin2x 比较系数得到(95)B1=A2=14,B3=18A1=B2=A3=0 因此(96)x2sin2xdx=x3614xcos2x+(14x2+18)sin2x+C

(4) (97)xarctanxdx=x2arctanx2x22(1+x2)dx=x2arctanx2x2+12arctanx+C

(5) (98)xln(x1)dx=x2ln(x1)2x22(x1)dx

(6) 令x=etet2=sinht,则(99)ln(x+1+x2)dx=ln(etet2+et+et2)detet2=tdsinht=tsinhtcosht+C=xln(x+1+x2)1+x2+C

(7) (100)(arccosx)2dx=t2dcost=(A1t2+A2t+A3)cost+(B1t2+B2t+B3)sint+C 求导得(101)t2sint=(2A1t+A2+B1t2+B2t+B3)cost+(2B1t+B2A1t2A2tA3)sint 比较系数得到(102)B1=A2=B3=0,A1=1,B2=A3=2 因此(103)(arccosx)2dx=(t22)cost2tsint+C=[(arccosx)22]x21x2arccosx+C

(8) (104)xtan2xdx=x22+xtanx+ln|cosx|+C

(9) (105)xsin2(x)dx=ln|sinx|xcotx+C

(10) (106)exsin2xdx=ex(A1+A2sin2x+A3cos2x)+C 求导得到(107)exsin2x=ex(1cos2x)2=ex(A1+A2sin2x+A3cos2x+2A2cos2x2A3sin2x) 比较系数得到(108)A1=12,A22A3=0,A3+2A2=12 因此(109)A1=12,A2=15,A3=110 亦即(110)exsin2xdx=12ex15exsin2x110excos2x+C

(11) (111)sin1exexdx=exsin1extanh11e2x+C

(12) (112)sin(lnx)dx=12x[cos(lnx)sin(lnx)]+C

8.2.5 杂题

例 8.2.6 以下函数是否存在原函数?若存在,求它的不定积分。

(1)

f(x)=|(x1)(3x2)|

(2)

sgn(x)={1,x>0,0,x=0,1,x<0.

(3)

f(x)={cos1x+2xsin1x,x00,x=0.

(1) 存在,设(113)F(x):=C+{2x52x2+x3,x(,23]2x+52x2x3+2827,x(23,1)2x52x2+x3+127,x[1,+) 验证可知F(x)=f(x)

(2) 不存在,因为导函数不存在第一类间断点。

(3) 存在,设(114)F(x):=C+{x2sin1x,x00,x=0 验证可知F(x)=f(x)