9.1 第六次作业参考答案

9.1.1 习题6.2

例 9.1.1 (习题6.2.1)计算以下不定积分:

(1)

xxxdx

(2)

1x2cos1xdx

(3)

1ex+exdx

(4)

1+cos2xdx

(5)

dx1+x2

(1) (1)xxxdx=x7/4dx=411x11/4+C

(2) (2)1x2cos1xdx=cos1xd(1x)=sin1x+C

(3) (3)1ex+exdx=d(ex)e2x+1=arctan(ex)+C

(4) 设x[π2,π2],则(4)1+cos2xdx=2cosxdx=2sinx+C

(5) (5)dx1+x2=x=tantsectdt=ln|sect+tant|+C=ln(x+1+x2)+C

例 9.1.2 (习题6.2.2)计算以下不定积分,其中n是正整数,a,b,α,β,λ都是非零实数:

(1)

eλxsinxdx

(2)

sinαxcosβxdx

(3)

tanxdx

(4)

sinxdxasinx+bcosxcosxdxasinx+bcosx

(5)

x4ln2xdx

(6)

sin(lnx)dx

(1) 设[eλx(Asinx+Bcosx)]=eλxsinx,则(6)eλxsinx=eλx[(λAB)sinx+(A+λB)cosx]A=λλ2+1,B=1λ2+1 因此(7)eλxsinxdx=eλx(λsinxcosx)λ2+1+C

(2) 设α2β2,则(8)sinαxcosβxdx=12[sin(α+β)x+sin(αβ)x]dx=cos(α+β)x2(α+β)cos(αβ)x2(αβ)+C

(3) (9)tanxdx=d(cosx)cosx=ln|cosx|+C

(4) 设第一、二个被积函数的原函数分别为F1,F2,则(10)aF1+bF2=dx=x+C1,bF1+aF2=acosxbsinxasinx+bcosxdx=ln|asinx+bcosx|+C2 因此(11)sinxdxasinx+bcosx=axbln|asinx+bcosx|a2+b2+Ccosxdxasinx+bcosx=bx+aln|asinx+bcosx|a2+b2+C

(5) (12)x4ln2xdx=15x5ln2x25x4lnxdx=15x5ln2x225x5lnx+2125x5+C

(6) (13)sin(lnx)dx=x=etetsintdt=12x(sin(lnx)cos(lnx))+C

9.1.2 习题6.3

例 9.1.3 (习题6.3.4)计算以下不定积分:

(1)

dxx2(1+x2)2dx

(2)

x3(1x2)3dx

(3)

x+31x3dx

(4)

1+x2dx

(5)

1x+x3dx

(6)

x2x+1x2+2x+2dx

(7)

x31x2dx

(8)

dxcos3xdx

(9)

sin5xcos4xdx

(10)

dxx1+x53

(11)

dx3+2sinx

(12)

dxcos4x

(13)

dx1+x44

(14)

1+x43xdx

(1) 设(14)1x2(1+x2)2=Ax2+E1+x2+F(1+x2)21=A(1+x2)2+Ex2(1+x2)+Fx2x=0可得A=1,令x=i可得F=1。等式两边同时求导并代入x=i可得(15)0=0+0+2Ex3+2FxE=F=1 因此(16)dxx2(1+x2)2=1xx2(1+x2)32arctanx+C 其中(17)In:=dx(1+x2)n=x(1+x2)n+2nx2dx(1+x2)n+1=x(1+x2)n+2n(InIn+1)In+1=x2n(1+x2)n+2n12nIn

(2) 设(18)x3(1x2)3=Ax1x2+Bx(1x2)2+Dx(1x2)3x2=A(1x2)2+B(1x2)+Dx=1可得D=1。等式两边同时求导可得(19)2x=4Ax(1x2)2BxA=0,B=1 因此(20)x3(1x2)3dx=12(1x2)+14(1x2)2+x+C

(3) 令t=x+31x3,则x=t33t3+1dx=12t2(1+t3)2dt,此时(21) x+31x3dx=12t3dt(1+t3)2=4t1+t3+433arctan2t13+23ln(t+1)2t2t+1+C=(x1)x+31x3+433arctan2x+31x313+2ln(1+x+31x3)+23ln(1x)+C

(4) (22)1+x2dx=x=tantsec3tdt=12[x1+x2+ln(x+1+x2)]+C

(5) (23)1x+x3dx=x=t66t5t3+t2dt=6x63x3+2x6ln(1+x6)+C

(6) 令t=x+1,则(24) x2x+1x2+2x+2dx=t2+13t+2t2+1dt=1+t2dt+2dt1+t231+t2=12[t1+t2+ln(t+1+t2)]+2ln(t+1+t2)31+t2+C=12(x+1)x2+2x+2+52ln(x+1+x2+2x+2)3x2+2x+2+C

(7) 令x=sintu=cost=1x2,则(25)x31x2dx=sin3tcos2tdt=(u21)u2du=15(1x2)5/213(1x2)3/2+C

(8) (26)sec3xdx=secxd(tanx)=secxtanxsecxtan2xdx=secxtanx+secxdxsec3xdx=12(secxtanx+ln|secx+tanx|)+C

(9) 令t=cosx,则(27)sin5xcos4xdx=(1t2)2dtt4=13cos3x2cosxcosx+C

(10) 令t=1+x53,则dxx=5x4dx5x5=3t2dt5(t31)(28)dxx1+x53=35tdtt31=35arctan1+21+x533+310ln|1+x531|12ln|x|+C

(11) 利用万能公式可得(29)dx3+2sinx=25arctan2+3tanx25+C

(12) (30)sec4xdx=(1+tan2x)d(tanx)=tanx+13tan3x+C

(13) 令t=x4u=1+t4,则(31)dx1+x44=14dtt1+t4=u2duu41=12arctanx1+x44+14lnx+1+x44x1+x44+C

(14) 令t=1+x43,则(32)1+x43xdx=12(t31)t3dt=127(1+x4)7/33(1+x4)4/3+C

9.1.3 习题7.1

例 9.1.4 (习题7.1.5)设gR[a,b]满足abg(x)dx>0,证明:ξ(a,b)使得gξ处连续且g(ξ)>0

证明 采用反证法1。假设ξ(a,b),若gξ处连续则g(ξ)0。由于gR[a,b],故

ε>0,取δ=εM,则(33)abg(x)dx=Ag(x)dx+[a,b]Ag(x)dxAMdx+[a,b]A0dxMδ=εε0+可得(34)abg(x)dx0 与题设矛盾!故假设不成立,即ξ(a,b)使得gξ处连续且g(ξ)>0

另证 仍然采用反证法,但是绕过Lebesgue法则。根据例9.3.15f的连续点集在[a,b]上稠密,故对[a,b]的任意划分,在每一个子区间中总能取到连续点作为标志点。由于f在连续点处非正,因此Riemann和非正,作为Riemann和极限的定积分也必定非正,与题设矛盾。

例 9.1.5 (习题7.1.6)设fR[0,π2],证明:(35)limn+0π/2f(x)sinnxdx=0

证明fR[a,b]f有界,故M>0使得|f(x)|Mε>0,注意到(36)0π/2sinnxdx0(πε)/2sinnπε2dx+(πε)/2π/2dx<π2cosnε2+ε2?εn满足下式即可(37)nln(ε/π)ln[cos(ε/2)] 此时(38)|0π/2f(x)sinnxdx|M0π/2sinnxdx<Mεlimn+0π/2f(x)sinnxdx=0

另证 实际上,由Wallis公式可得(39)0π/2sinnxdx={π2(n1)!!n!!,neven(n1)!!n!!,noddan=(n1)!!n!!,则(40)anan+1=1n+10,a2n=expk=1nln(112k)expk=1n12k0 亦即limn+an=0。因此(41)|0π/2f(x)sinnxdx|M0π/2sinnxdxMπ2(n1)!!n!!0

例 9.1.6 (习题7.1.8)设f:[a,b][α,β]严格单调,g=f1。讨论abf(x)dxαβg(y)dy之间的关系,并证明你的结论。

证明 本题与9.3.3类似,画图可知结论为

换元法需要f可微;若f仅仅可积,我们需要通过定义来证明。

[a,b]的任意划分P:a=x0<x1<<xn=b。若f严格增,则f(P):α=f(x0)<f(x1)<<f(xn)=β亦是[α,β]的划分,因此两者的Riemann和满足(42) S(f,P,{xk}k=1n)+S(f1,f(P),{f(xk)}k=0n1)=k=1n[f(xk)(xkxk1)+f1(f(xk1))(f(xk)f(xk1))]=k=1n[xkf(xk)xk1f(xk1)]=bf(b)af(a)P0,即得(43)abf(x)dx+αβg(y)dy=bf(b)af(a)=bβaα

f严格减,则f(P):α=f(x0)>f(x1)>>f(xn)=β亦是[α,β]的划分,因此两者的Riemann和满足(44) S(f,P,{xk}k=1n)S(f1,f(P),{f(xk)}k=0n1)=k=1n[f(xk)(xkxk1)f1(f(xk1))(f(xk1)f(xk))]=k=1n[xkf(xk)xk1f(xk1)]=bf(b)af(a)P0,即得(45)abf(x)dxαβg(y)dy=bf(b)af(a)=bαaβ

9.1.4 习题7.4

例 9.1.7 (习题7.4.1)计算以下定积分:

(1)

ππsinmxsinnxdx,其中m,nN

(2)

0π/2sin(2m1)xsinxdx,其中mN

(1) 当m=n时,有(46)ππsin2nxdx=ππ1cos2nx2dx=πmn时,有(47)ππsinmxsinnxdx=12ππ[cos(mn)xcos(m+n)x]dx=12[sin(mn)xmnsin(m+n)xm+n]ππ=0 因此(48)ππsinmxsinnxdx=πδmn

(2) 注意到(49)sin(2m1)xsinx=k=1m1[sin(2k+1)xsin(2k1)x]=2sinxk=1m1cos2kx 因此(50)0π/2sin(2m1)xsinxdx=0π/2(1+2k=1m1cos2kx)dx=π2

补充 同时注意到(51)sin2mx=k=0m1[sin(2k+2)xsin(2k)x]=2sinxk=0m1cos(2k+1)x 因此(52)0π/2sin2mxsinxdx=2k=0m10π/2cos(2k+1)xdx=2k=0m1(1)k2k+1

例 9.1.8 (习题7.4.2)计算以下定积分:

(1)

0aa2x2dx

(2)

12x21x4dx

(3)

0πxsinx1+cos2xdx

(4)

01ln(1+x)1+x2dx

(1) 令x=acosθ,则(53)0aa2x2dx=0π/2a2sin2θdθ=π4a2 本题也可以直接通过几何意义得到答案。

(2) 令x=secθ,则(54)12x21x4dx=0arccos12sin2θcosθdθ=13sin3θ|0arccos12=38

(3) 令x=πt,则(55)0πxsinx1+cos2xdx=0π(πt)sint1+cos2tdt=π20πsint1+cos2tdt=π2arctancost|0π=π24

(4) 令x=tanθ,则(56)01ln(1+x)1+x2dx=0π/4ln(1+tanθ)dθ=φ=π/4θ0π/4ln(1+1tanφ1+tanφ)dφ 因此(57)0π/4ln(1+tanθ)dθ=120π/4ln2dθ=π8ln2

1¬(AB)=A¬B