3.4 Applications of integral depending on a parameter

Integral transformation: function fIntegral function g where

       ∫ +∞

g(y) =  −∞  K (x,y )f (x)dx

where K(x,y) is called the kernal of the integral transformation. Analogy. Assuming f is discrete, i.e.

f −→  v =,     v(k ) = xk, k ∈ {1,...,n}

Similarly,

K  (x, y) − → Kij,    g − →  w

then we have

     ∑n
wi =     Kijvj
     j=1

So integral transformation is the extension of linear transformation from finite dimension to infinite dimension.

Particularly, if K(x,y) has a form of K(yx), then

             ∫ +∞
(K  ∗ f)(y) =      K (y − x )f (x)dx
              −∞

is called the convolution of K and f. At this time

              ∫ +∞
(K ∗ f)′(y) =      K ′(y − x)f(x)dx
               −∞

Example 3.4.1 The boundary value problem of Laplace function. Assuming Ω={(x,y)|y>0}R2, then

Assuming

          ----y------
K (x, y) = π(x2 + y2)

we can verify that

Assuming f is continuous and bounded (within M), let

         ∫                             ∫
            +∞        y                   +∞
u(x,y ) =      π-[(x-−-t)2 +-y2]f (t)dt =       K (x − t,y)f(t)dt
           −∞                            −∞

Then we have Δu=+ΔK(xt,y)f(t)dt=0|u(x,y)f(x)|=|+yπ[(xt)2+y2](f(t)f(x))dt|1π|tx|<δy|f(t)f(x)|π[(xt)2+y2]dt+1π|tx|δy|f(t)f(x)|π[(xt)2+y2]dt1π|tx|<δyϵπ[(xt)2+y2]dt+1π|tx|δy2Mπ[(xt)2+y2]dt=ϵ+4Mπ(π2arctanδy)|limy+u(x,y)f(x)|0limy+u(x,y)=f(x)

Laplacian transformation.
          ∫ +∞  − px
ℒ[f](p) =      e    f(x)dx = F (p)
           0

If M>0 such that x>0, |f(x)|Meαx, then the Laplacian transformation exists when p>a and FC (Note: maybe f is only integrable!). We can prove that

          ∫ +∞
F (k)(p) =      (− x)ke−pxf(x)dx
           0

Consider L[f](p)=0+epxf(x)dx=0+epxdf(x)=epxf(x)|0++p0+epxf(x)dx=f(0)+pL[f](p)

So we have