4.3 Change of variable for multiple integral

Plain orthogonal coordinate polar coordinate.

We have

∫        ∑                 ∑                      μ (R )
  f dμ ≃     f(ξk)μ (Rk ) =     f(rk cos 𝜃k,rk sin𝜃k)--k-μ (Dk)
 Ω         k                k                     μ (Dk )

where f(rkcosθk,rksinθk)=f(rk,θk)=f(ηk) and

μ-(Rk)    μ(Rk-)
μ (Dk ) ≃  μ( ˜D )
              k

where D~k represents the local parallelogram at P0.

See Figure 4.2. Assuming f:ΩR where ΩRm is a bounded closed and Jordan-measurable, fR(Ω); ϕ:DΩ is a diffeomorphism of C1 (invertible coordinate transformation of C1) where DRm is a bounded closed and Jordan-measurable, then we can prove that

μ(Rk )
------=  |det∂ ϕ(P0)|
μ( ˜Dk )

Therefore,

∫          ∫
   fd μ  =    f(ϕ (x ))|det ∂ϕ (x )|dμ
 Ω     y    D                      x

PIC

Figure 4.2: Change of variable for multiple integral

Example 4.3.1

1.

Polar coordinate (in 2-dimension).

                 ∂ (x, y)
dxdy = ∖lef t|det-------∖right|drd𝜃 =  ∖lef t|det∖right|drd𝜃 =  rdrd𝜃
                 ∂ (r,𝜃)
2.

Cylindrical coordinate.

We have

   ∂ (x, y,z)
det--------- = r ⇒  dxdydz  = rdrd 𝜃dz
    ∂(r,𝜃,z)
3.

Spherical coordinate.

We have

    ∂(x,y,z)
det ---------=  r2sin 𝜃 ⇒  dxdydz  = r2sin 𝜃drd𝜃d ϕ
    ∂(r,𝜃,ϕ)

Symmetries of multiple integral. Assuming DR2, (x,y)D(x,y)D and f(x,y)=f(x,y); D1={(x,y)D|y0}, D2={(x,y)D|y0}, then we have

∫                 ∫
    f(x,y )dxdy =     f (x,y)dxdy
 D1                 D2

Proof Firstly,

∫         ∫         ∫
   fdμ =      fdμ =     f dμ
 D         D1         D2

For D2, we take a variable transformation:

then (x,y)D2(u,v)D1=D~2, we have

∫                 ∫                                           ∫                 ∫
                                        ∂(x, y)
    f(x,y)dxdy  =     f(u, − v )∖lef t|det ∂(u,-v)∖right|dudv =     f(u,v)dudv  =     f(x,y )dxdy
 D2                D˜2                                          D1                D1

Note According to IFT,

∂-(x,-y)  ∂(u,v-)
∂ (u, v) ⋅∂(x,y ) = I

Therefore,

    ∂(x,y )    ∂(u,v)
det -------det -------=  1
    ∂(u,v )    ∂(x,y)

Example 4.3.2 D={(x1,x2)|1x12x223,1x1x22,x1,x20}, seek I=D(x12+x22)dx1dx2. Let

which is diffeomorphism of C1, then D~={(y1,y2)|1y13,2y24}, so I=D~y12+y22|det(x1,x2)(y1,y2)|dy1dy2=D~y12+y22|det(y1,y2)(x1,x2)|1dy1dy2=D~y12+y22|det(2x12x22x22x1)|1dy1dy2=14D~dy1dy2=1

Example 4.3.3 D={(x,y)|x2+y2x+y}, seek Dx+yx2+y2dxdy.

Take a polar transformation (x,y)(r,θ), we have D~={(r,θ)|0rsinθ+cosθ} where θ[π4,3π4], then Dx+yx2+y2dxdy=π43π4[0sinθ+cosθr(sinθ+cosθ)r2rdr]dθ=π43π4(cosθ+sinθ)2dθ=π

It is not perfectly correct, since x+yx2+y2 is unbounded near (x,y)=(0,0). It’s a multiple improper integral.

Example 4.3.4 D={(x1,...,xm)|x1++xmaxi0,i}, seek

    ∫

I =    f(x1 + ⋅⋅⋅ + xm)dx1 ⋅⋅⋅dxm
     D

Take a variable transformation

then we have I=0y1ymaf(ym)|det(x1,...,xm)(y1,...,ym)|dy1dym=0y1ymaf(ym)dy1dym=0af(ym)[0y1ym1ymdy1dym1]dym

How to calculate the integral in [  ]? Firstly,

∫
               dy1 ⋅⋅⋅dym −1 = ymm− 1
  y1,...,ym− 1∈[0,ym]

Then, consider the order of y1,...,ym1. For any arrangement {σ1,...,σm1} of {1,...,m1},

∫                                  ∫
                                                              ∂(yσ1,...,yσm−1)-
                  dy σ1 ⋅⋅⋅dyσm− 1 =                ∖left|det  ∂(y1,...,ym−1) ∖right|dy1 ⋅⋅⋅dym− 1
 0≤yσ1≤⋅⋅⋅≤yσm− 1≤ym                    0≤y1≤ ⋅⋅⋅≤ym−1≤ym

The determinant of a permutation matrix is either 1 or 1, so

∫                                  ∫

                  dyσ1 ⋅⋅⋅dyσm−1 =                  dy1⋅⋅⋅dym −1
 0≤yσ1≤ ⋅⋅⋅≤yσm−1≤ym                   0≤y1≤⋅⋅⋅≤ym−1≤ym

Notice that y1,...,ym1[0,ym]dy1dym1={σ1,...,σm1}={1,...,m1}0yσ1yσm1ymdyσ1dyσm1=(m1)!0y1ym1ymdy1dym1

Therefore

∫
                                 --ymm−-1--
                 dy1 ⋅⋅⋅dym −1 = (m −  1)!
  0≤y1≤ ⋅⋅⋅≤ym−1≤ym

Terminally

    ∫  a         m− 1                 ∫  a
I =     f(y  )--ym----dy   = ----1----    f(x)xm −1dx
      0    m  (m −  1)!  m   (m  − 1)!  0

Example 4.3.5 Assuming μRm, Σ is a symmetric positive-definite matrix of mth-order, prove that

    ∫
        ------1-------            1-      T  −1
I =  ℝm ∘ (2π )m detΣ exp ∖left[− 2(x − μ)  Σ  (x − μ )∖right ]dx1 ⋅⋅⋅dxm  = 1

According to spectral theorem, Σ is symmetric and positive-definite, so there exists an orthogonal matrix Q such that

QT ΣQ  =  Λ =

where σk>0. Then

Σ  = Q ΛQT  =   Q  QT  = AAT
              ◟◝◜◞
                A

where A is invertible. Let y=A1(xμ), then x=Ay+μ where x and y are diffeomorphism, hence

    ∫
               1                  1 T  T  − 1                   ∂x
I =     ∘------m------exp ∖lef t[− -y  A  Σ  Ay ∖right ]∖left|det ---∖right|dy1⋅⋅⋅dym
     ℝm    (2 π)  detΣ             2                             ∂y

Notice that

AT Σ−1A  = AT (AAT )− 1A  = I

therefore I=Rm1(2π)m(detAdetAT)exp(12yTy)|detA|dy1dym=Rm1(2π)mexp[12(y12++yn2)]dy1dym=+12πey122dy1+12πeyn22dyn=(+12πet22dt)m

How to calculate the last integral? Consider (+12πet22dt)2=R212πe12(y12+y22)dy1dy2Polar coordinate=0+02π12πe12r2rdrdθ=1

Terminally I=1.

Center of mass. Assuming an object occupying ΩRm, its mass distribution (density) is
           m (Ω ∩ B (x,r))
ρ(x) = lim  ---------------
       r→0 μ (Ω  ∩ B(x, r))

The center of mass is defined as

            dm(x)
     ∫   ◜---◞◟---◝
--   -Ω-xρ-(x-)dμ(x)-
x =   ∫  ρ(x)dμ(x)
       Ω

It’s a weighted average.

Another similar example is in probability theory. Assuming a random variable XΩ, the probability density is defined as

f(x) = lim  P(X--∈-Ω-∩-B-(x,r))-
       r→0   μ (Ω ∩ B (x, r))

The (mathematical) expectation is defined as

       ∫
EX   =    x f(x)dμ-(x-)
        Ω   ◟ dP◝◜(x)  ◞

It’s also a weighted average.

Example 4.3.6 Assuming Ω={x=(x1,...,xm)Rm|xm0,x12++xm2R2}, its mass is evenly distributed, i.e. ρ(x)=ρ=const. Seek the center of mass of Ω.

According to the definition, we have

     ∫           T
--   -Ω(x1,∫...,xm-)-dx1-⋅⋅⋅dxm--
x =          dx1 ⋅⋅⋅dxm
           Ω

Firstly, Vm(R)=x12++xm2R2=RRdxmx12++xm12R2xm2dx1dxm1=RRVm1(R2xm2)dxm

V1(R)=2R. Assuming Vm(R)=AmRm where Am has nothing to do with R (proven by mathematical induction), we have

          ∫ R                                            ∫ 1
                         √ --2---2-      m −1   t=Rs   m                2 m−21-
Vm (R ) =  −R Am −1∖left(  R  − t ∖right)    dt −− −→  R    −1 Am −1(1 − s )   ds

Therefore, Am=Am111(1t2)m12dtx=t2Am101(1x)m12x12dx=Am1B(12,m+12)=Am1Γ(12)Γ(m+12)Γ(m+22)Am=AmAm1Am1Am2A2A1A1=Γ(12)Γ(m+12)Γ(m+22)Γ(12)Γ(m2)Γ(m+12)Γ(12)Γ(32)Γ(42)2=Γm(12)Γ(m+22)

According to symmetry,

--         --
x1 = ⋅⋅⋅ = xm −1 = 0

As for xm, we have Ωxmdx1dxm=0R(x12++xm12R2xm2dx1dxm1)xmdxm=0RΓm1(12)Γ(m+12)(R2t2)m12tdtt2=R2s=Γm1(12)2Γ(m+12)Rm+101(1s)m12ds=Γm1(12)(m+1)Γ(m+12)Rm+1[(1s)m+12]01=Γm1(12)(m+1)Γ(m+12)Rm+1

Terminally,

--         Γ (m+2-)R
xm  = ---------21----m+1--
      (m  + 1)Γ (2)Γ (-2-)

Example 4.3.7 Select n numbers at random in [0,1] (independent and evenly distributed), seek the mean value (expectation) of the minimum value.

The probability density is f(x)=10x1, the joint density of n random numbers is

f(x1) ⋅⋅⋅f(xn) = 10≤x ≤1,∀i
                     i

, then the expectation of the minimum value is xmin=Rnmin1inxif(x1)f(xn)dx1dxn=[0,1]nmin1inxidx1dxn={σ1,...,σm}={1,...,m}0xσ1xσm1xσ1|det(x1,...,xn)(xσ1,...,xσn)|dxσ1dxσn={σ1,...,σm}={1,...,m}01(xσ1xσm1dxσ2dxσn)xσ1dxσ1={σ1,...,σm}={1,...,m}011(n1)!(1xσ1)n1xσ1dσ1=n!1(n1)!B(2,n)=1n+1

Example 4.3.8 Assuming the radius and density of a 3-dimension ball are respectively R,ρ=const, seek its gravitational force applied to a mass point outside the ball.

Construct the coordinate system where the center of the ball is put at origin and the mass point m is put at (0,0,a). For a point x in the ball, we have

          -Gm--ρdμ---            ---------Gm--ρdx1dx2d3-----------              T
dF (x) =  ∥x − ae3∥3(x − ae3 ) =        2    2          2        32 (x1,x2,x3 − a)
                                 ∖left(x1 + x2 + (x3 − a )∖right )

Therefore, F=ΩdF(x)=Gmρx12+x22+x32R2(x1,x2,x3a)Tdx1dx2d3(x12+x22+(x3a)2)32=e3GmρRR(x3a)[x12+x22R2x32dx1dx2(x12+x22+(x3a)2)32]dx3=e3GmρRR(ta)[0R2t202πrdrdθ(r2+(ta)2)32]dt=Gmρa24π3R3e3

Example 4.3.9 Kepler II law for centripetal (centrifugal) force field. The motion of a mass point on a plain u:[a,b]R2 where u(t)=(x1(t),x2(t)). Assuming Ω is covered by a line connecting a planet to the sun over certain period of time [a,b], let (x1,x2)=su(t), we have

det ∂(x1,x2)-=  det(su′(t),u (t)) = sdet(u ′(t),u(t))
     ∂(t,s)

then the area of Ω is

    ∫            ∫                                           ∫ b
A =    dx1dx2  =          ∖left|det ∂(x1,x2)∖right |dtds =  1-   |det(u ′(t),u(t))|dt
      Ω           [a,b]× [0,1]           ∂(t,s)                2  a

Kepler II:

                   ′
A =  const ⇔ det(u (t),u(t)) = const

By taking the derivative, we have

d-∖left[det(u′(t),u (t))∖right] = det(u′′(t),u(t)) + det(u ′(t),u′(t)) = det(u ′′(t),u (t)) = 0
dt

meaning u(t),u(t) are linear dependent, i.e. the force field is centripetal (centrifugal).