4.6 Surface integral of the second kind

PIC
Figure 4.5: Physical background

Definition 4.6.1 Surface Σ with a continuous unit norm vector field n:ΣR3 is a oriented (orientable) surface (Σ,n).

Example 4.6.1 See Figure 4.6.

PIC
(a) Tyre surface
PIC
(b) Möbius strip
Figure 4.6: Orientable and non-orientable surface

Definition 4.6.2 Assuming (Σ,n) is a oriented surface, F:ΣR3 is continuous, the surface integral of the second kind of F along (Σ,n) is defined as ΣF,ndσ.

Assuming
       -------1--------
n(x) = √ --2----2-----2,    F  =
         A  +  B  + C

then we have

         AX   + BY  + CZ            1                 ∂x    ∂x
⟨F, n⟩ = -√--2-----2----2- = √---2----2-----2∖left⟨F, ---×  --∖right ⟩
            A  + B  +  C       A  + B   + C           ∂u    ∂v

At this time, if (A,B,C)=xu×xv, i.e.

∂x    ∂x       ∂ (y,z)        ∂(z,x)        ∂(x,y )
---×  ---=  det-------i + det -------j + det-------k
∂u    ∂v    ◟--∂◝(u◜,-v)◞    ◟---∂◝(◜u,v)◞    ◟---∂◝(◜u,v-)◞
                A             B              C

we can prove that

     √ ----------       √ --------------
dσ =   EG  − F 2dudv  =   A2 + B2 +  C2dudv

Assuming D:{(u,v)} Hence

∫             ∫                                   ∫
  ⟨F, n⟩dσ =     ∖left⟨F, ∂x-×  ∂x-∖right⟩dudv =     det∖left(F, ∂x-, ∂x-∖right)dudv
 Σ             D          ∂u    ∂v                 D             ∂u  ∂v

The geometric (physical) meaning of the formula above. See Figure 4.7, det(F,xu,xv) represents the volume of infinitesimal flow.

Note Here, the order of u,v represents the direction of Σ. See Figure 4.8, when we use spherical coordinate to describe a sphere, we use (θ,ϕ) if the norm vector is outer norm vector, (ϕ,θ) if the norm vector is inner norm vector.

PIC
Figure 4.7: Physical meaning of the integral

PIC

Figure 4.8: The order of parametric variable

Define

              ∂ (x, y)
dx ∧ dy = det -------dudv
              ∂ (u, v)

then we could rewrite the integral above as

∫             ∫                                      ∫
   ⟨F,n ⟩dσ =    Xdy  ∧ dz + Y dz ∧ dx + Zdx  ∧ dy =    ω
 Σ             Σ                                       Σ

where ω=Xdydz+Ydzdx+Zdxdy is called the form of second-order derivative. If the direction of projection of the norm vector of the surface is the same as the direction of the norm vector of xOy plane, then dxdy=dxdy, otherwise dxdy=dxdy. The geometric meaning of this form is shown in Figure 4.9.

PIC

Figure 4.9: Geometric meaning of the integral

Properties of the integral.

Example 4.6.2 Assuming Σ:z=x2+y2(x2+y21) where z component of the norm vector points downward (z direction), seek Σxdydz.

Method 1. Since i×j get k, so (x,y) corresponds with norm vector pointing +z direction, and (y,x) corresponds with z direction. The parametric representative of Σ is

x =, D : x2 + y2 ≤ 1

and the vector field

F ==

Thus

∫      ∫              ∂x   ∂x           ∫             ∫
   ω =    det ∖lef t(F,---, --∖right ) =    2x2dxdy =     (x2 + y2)dxdy
 Σ      D             ∂y   ∂x            D             D

Method 2.

     ∫                     ∫                         ∫                ∫
                 2    2                                   2                2
I =   Σxdy  ∧ d(x +  y ) =  Σ xdy ∧ (2xdx + 2ydy ) =  Σ 2x dy ∧ dx =   D 2x dxdy
                                                     ◟-----◝◜-----◞   ◟----◝◜---◞
                                                      Surface integral   Multiple integral

Example 4.6.3 Assuming Σ:x2a2+y2b2+z2c2=1 where the norm vector points outward. Seek Σxdydz+ydzdx+zdxdy.

Let

i.e.

(x,y, z)→  ∖left(x-, y-, z∖right) = (˜x,y˜, ˜z)
◟--◝◜--◞   ◟-----a--b--c-◝◜--------------◞
 Ellipsoid                 Sphere

For the sphere, (θ,ϕ) corresponds with +r direction. If

   ∂ (x˜, ˜y, ˜z)
det--------- > 0
   ∂ (x, y,z)

then the transformation is a direction-preserving transformation, meaning for the ellipsoid surface, (θ,ϕ) also corresponds with +r direction. Therefore Σω=Σ~ax~d(by~)d(cz~)+by~d(cz~)d(ax~)+cz~d(ax~)d(by~)=abcΣ~x~dy~dz~+y~dz~dx~+z~dx~dy~=abcΣ~n,ndσ=abcΣ~dσ=4πabc

Example 4.6.4 Assuming Σ:z=1x2y2(x2+y21) where the norm vector points upward. Seek Σ(x2z)dxdy+(z2y)dzdx.

Since dz=2xdx2ydy, we have I=Σ(x2(1x2y2))dxdy+[(1x2y2)2y](2ydy)dx=Σ[2x2y21+2y(1x2y2)2]dxdy=D[2x2y21+2y(1x2y2)2Odd w.r.t. y]dxdy=12D(x2+y22)dxdy