4.2 The computation of multiple integral

Basic methods.

Repeated integral

Definition 4.2.1 DRn is a Jordan measurable set if ϵ>0, finite rectangles R1,...,RN such that DR1RN and k=1Nμ(Rk)<ϵ.

Assuming axb, Ix={yRn1|(x,y)D}. We consider the rectangle first. See Figure 4.1, we have Rfdμ=[a,b]×[c,d]f(x,y)dμ(x,y)=kf(ξk)|Rk|=i=1n[j=1nf(xi,yj)Δyj]Δxi=i=1ncdf(xi,y)dyg(xi)Δxi=i=1g(xi)Δxi=abg(x)dx

Therefore, we have

Theorem 4.2.2 (Fubini) If D=RR2, fR(D), then

∫         ∫        ∫                        ∫         ∫
            b         d                        d        b
   fdμ =     ∖lef t(    f(x,y)dy ∖right)dx =     ∖left(   f (x,y)dx∖right )dy
 R         a         c                        c        a

If D is a Jordan measurable set, fR(D), D[a,b]×Rn1, then x[a,b], Ixf(x,y)dy exists, and

∫          ∫        ∫--
             b
    fdμ =     ∖left(   f(x,y )dy ∖right)dx
  D         a        Ix

PIC
(a) Rectangle
PIC
(b) Any Jordan measurable set
Figure 4.1: Repeated integral

Example 4.2.1 Seek 01(x1ey2dy)dx=Dey2dμ. where D={(x,y)|0x1,xy1}.

Exchange the order of integral with assistance of graph. Transform D into D={(x,y)|0y1,0xy}, we have

∫        ∫                      ∫        ∫                      ∫
  1        1  −y2                 1        y  −y2                 1 − y2       1-     − 1
   ∖left(    e   dy∖right)dx =     ∖left(    e   dx∖right)dy =     e   ydy  = 2 (1 − e  )
 0        x                      0        0                      0

Exchange the order of integral without assistance of graph. Notice that

⇔ 0 ≤  x ≤ y ≤ 1

We have 01(x1ey2dy)dx=01(+ey21xy1dx)dy=+(01ey210y1dx)dy=+(ey210y101dx)dy=01ey2ydy=12(1e1)

Example 4.2.2 Assuming D is the bounded closed set bounded with 3 cylindrical surface x2+y2=1,y2+z2=1,z2+x2=1. Seek its volume μ(D).

It is trivial that D={(x,y,z)|x2+y21,y2+z21,z2+x21}, then we have μ(D)=D1dμ=R31x2+y21,y2+z21,z2+x21dxdydz=+dx+dy+1x2+y21,y2+z21,z2+x21dz=+dx+dy|z|<min{1y2,1x2}1x2+y21dz=2++1x2+y21min{1y2,1x2}dxdy=2+dx+1|y|1x2[1y21|y||x|+1x21|y|<|x|]dy=80+dx[0+10y1x2yx1y2dyI+0+10y1x2y<x1x2dyII]

For I, we have 0xy1x20x22, then

   ∫  √22   ∫  √1−x2∘  ------       ∫ √22-            √ -------                          √ --
I =      dx           1 − y2dy = 1-     ∖left(arcsin   1 − x2 − arcsin x∖right)dx =  2-−---2
     0       x                   2  0                                                 2

For II, we have ymin{x,1x2}, then II=011x2dx0min{x,1x2}dy=011x2min{x,1x2}dx=022x1x2dx+221(1x2)dx=4212+85212=222

Terminally, we have

                   √ --      √ --                √ --
μ(D ) = 8∖left(2-−---2 + 2-−---2 ∖right) = 16 − 8  2
                  2         2

Example 4.2.3 Rewrite

1.

Df(x,y)dxdydydx, D={(x,y)|x+y1,yx1,y0}.

2.

Df(x,y)dxdydxdy, D={(x,y)|x+y1,yx1,y0}.

3.

D|yx2|dxdydxdy,dydx, D={(x,y)||x|1,0y2}.

Key.

1.

Df(x,y)dxdy=01dyy11yf(x,y)dx.

2.

Df(x,y)dxdy=11dx01|x|f(x,y)dy.

3.

D|yx2|dxdy=11dx[0x2(x2y)dy+x22(yx2)dx]; I=D|yx2|dxdy=+dy+[(yx2)1yx2+(x2y)1y<x2]11x10y2dx=02dymax{1,y}min{1,y}(yx2)dx+01dy1y(x2y)dx+01dyy1(x2y)dx

Example 4.2.4 Assuming D1,D2 are 2 bounded closed sets bounded with z=x+1,z=0,x2+y2=4. Seek μ(D1),μ(D2).

Let D={(x,y)|z=x+1,z=0,x2+y2=4}=

∪ = D1 ∪ D2

For D1, we have D1=x2+y24dxdy0x+1dz=12dx4x24x2dy0x+1dz=122(x+1)4x2dx=33+8π3

Example 4.2.5 Exchange the order of the integral

∫  2π   ∫ sinx             ∫ π   ∫  sinx            ∫ 2π    ∫ 0

  0  dx  0    f(x,y)dy =   0  dx  0   f (x,y)dy −  π   dx  sinxf (x,y)dy