3.3 Criterion for uniformly convergent

Theorem 3.3.1 (Uniformly Cauchy convergent) a+f(x,y)dx is uniformly convergent with respect to yU if and only if ϵ>0, N(ϵ)>a such that B>AN(ϵ), yU, |ABf(x,y)dx|<ϵ.

Proof , obviously. , we have

Uniform  Cauchy  ⇒  Pointwisely Cauchy  ⇒  Pointwisely Convergent

So ϵ>0, yU, N(ϵ,y)>a such that B>max{N(ϵ,y),N(ϵ)},

      ∫ B
∖left|    f(x, y)dx − F (y)∖right| < 𝜖
       a

Therefore, A>N(ϵ), we have I=|aAf(x,y)dxa+f(x,y)dx||aBf(x,y)dxa+f(x,y)dx|+|BAf(x,y)dx|ϵ+ϵ=2ϵ

Theorem 3.3.2 (Weierstrass theorem) Assuming |f(x,y)|g(x), x[a,+), yU. If a+g(x)dx is convergent, then a+f(x,y)dx is uniformly absolutely convergent with respect to yU.

Proof Hint

∫ B               ∫  B
    |f (x,y)|dx ≤      g (x )dx < 𝜖
 A                ◟-A----◝◜-----◞
                 ∃N (𝜖) s.t. ∀B>A ≥N(𝜖)

Example 3.3.1 Gamma function

        ∫ +∞
Γ (α ) =      e− xxα−1dx
         0

is of C with respect to α>0.

Let f(x,α)=exxα1, then

∂kf
--k-=  e−xxα−1(lnx )k
∂α

If kfαk is uniformly convergent with respect to α in a certain neighborhood U(α0), then

          ∫ +∞
Γ (k)(α ) =     e− xxα−1(lnx )kdx
           0

We use a strong Weierstrass function (with no respect to α) to control the integrand. Consider I. 01exxα1(lnx)kdxII. 1+exxα1(lnx)kdx

Therefore, kfαk is uniformly convergent with respect to α[2δ0,1+1δ0], meaning Γ(α) is kth-order derivable in (2δ0,1+1δ0).

Example 3.3.2 Beta function B(α,β).

          ∫ 1
B (α, β) =     xα−1(1 − x)β−1dx,     α, β > 0
           0

is of C with respect to (α,β) and

B (α,β) =  Γ (α)Γ-(β-)
           Γ (α + β )

When m,nN,

                                                 (           )
            Γ (m-+-n)-   (m--−-1)!(n-−-1)!          m  + n − 2                    − 1
B (m, n) =  Γ (m )Γ (n) = (m  + n − 1)!  =  ∖left[   m  − 1    (m + n − 1 )∖right ]

Let

           ∂k+l    α−1       β−1     α−1       β− 1     k          l
fk,l(x) = ---k---l(x    (1 − x)   ) = x   (1 − x)   (ln x) (ln(1 − x))
         ∂ α ∂β

We need to prove that 01fk,l(x)dx is uniformly convergent with respect to (α,β) in any bounded closed set of (0,+)×(0,+).

Take any δ0(0,1), (α,β)[2δ0,2δ0]×[2δ0,2δ0], M>0 such that

  δ0     k       δ0          l
|x  (ln x) (1 − x)  (ln(1 − x)) | ≤ M,     ∀x ∈  (0, 1)

Therefore,

 α −1       β−1     k           l    α−1−δ0       β−1−δ0
|x    (1 − x )  (ln x) (ln (1 − x))| ≤ x      (1 − x)      M

According to Weierstrass Criterion, 01fk,l(x)dx is uniformly convergent with respect to (α,β)[2δ0,2δ0]×[2δ0,2δ0], meaning B(α,β) is kth-order derivable with respect to α and lth-order derivable with respect to β in (2δ0,2δ0)×(2δ0,2δ0).

Prove the relation between Gamma function and Beta function. B(α,β)=01xα1(1x)β1dxy(0,+)x=1/(y+1)0+yβ1(1+y)α+βdyΓ(α)=0+tα1etdty is constt=xyyα0+xα1exydxΓ(α+β)=(1+y)α+β0+xα+β1ex(1+y)dxΓ(α+β)B(α,β)=0+Γ(α+β)yβ1(1+y)α+βdy=0+0+xα+β1yβ1ex(1+y)dxdy=0+xα+β1ex[0+yβ1exydy]dxt=xy=0+xα1ex[0+tβ1etdt]dx=0+xα1exdx0+tβ1etdt=Γ(α)Γ(β)

Example 3.3.3 Dirichlet function D(α).

         ∫
           +∞ sin αx
D (α ) =      ---x-- dx =
          0

Let

       ∫ +∞      sin x
g(y) =       e−yx-----dx
        0         x

Take any δ>0, then for any y[δ,+), we have

          sinx
∖left|e−yx-----∖right| ≤ e−yx ≤ e−δx
            x

convergent. According to Weierstrass Criterion, g is uniformly convergent with respect to y[δ,+).

       ∫                                     ∫
 ′       + ∞ -d-       −yxsin-x-                 +∞  −yx
g(y) =       dy ∖lef t(e    x   ∖right)dx = −       e   sin xdx
        0                                      0

is uniformly consistent with respect to y[δ,+), meaning g is derivable in (0,+). g(y)=0+eyxsinxdx=0+eyxdcosx=eyxcosx|0+0+cosxdxeyx=1+y0+eyxcosxdx=1+0+eyxdsinx=1+(yeyxsinx)0++y20+eyxsinxdxg(y)=0+eyxsinxdx=1y2+1g(y)=arctany+Climy+g(y)=limy+0+eyxsinxxdx=0+(limy+eyxsinxx)dx=0limy+g(y)=limy+(arctany+C)=Cπ2=0C=π2g(0)=0+sinxxdx=π2

Theorem 3.3.3 2 sufficient conditions of the uniform convergence of 0+f(x,y)g(x,y)dx with respect to yU:

  • (Dirichlet) A>0,yU,

          ∫  +∞
∖lef t|      f(x,y )dx∖right| ≤ M
        0

    g is monotonous with respect to x, and

     lim  g (x,y) = 0
x→+∞

    which is uniform with respect to yU.

  • (Abel) yU, the integral

    ∫  +∞
      f(x, y)dx
  0

    is uniformly convergent. g is monotonous with respect to x, and bounded with respect to (x,y), i.e. x>0,yU, |g(x,y)|<M.